
1

AIR Domain

Software Reuse Repository

and CM Strategy

Karl C. Geist

AIR Domain Representative

21 February 2006

2

Agenda

• Mat Overview and Discussion

• Software Reuse Questions

• General Software Reuse Opportunities

• Specific NAVAIR Examples, Initiatives,
or Philosophies

–PMA-209 – Rex Coombs

–PMA-281 – Mike Stine

–PMA-205 – Ken Reams

3

NAVAIR Mission Area Teams (MAT)NAVAIR Mission Area Teams (MAT)
ASN (RD&A)

ASSISTANT SECRETARY OF THE NAVY
(RESEARCH, DEVELOPMENT & ACQUISITION)

CNO
CHIEF OF NAVAL OPERATIONS

PROGRAM MANAGEMENT

COORDINATION ON REQUIREMENTS
AND RESOURCES

• JOINT STRIKE
FIGHTER

• PRECISION STRIKE
WEAPONS (JSOW,
JDAM, JASSM,
PAVEWAY)

• TOMAHAWK
ALL-UP-ROUND

• CRUISE MISSILE
COMMAND AND
CONTROL

• CRUISE MISSILE
WEAPONS SYSTEMS

• DIRECT AND TIME
SENSITIVE STRIKE
(HARM, AARGM,
HELLFIRE, JCM, TOW,
MAVERICK)

• STANDOFF MISSILE
SYSTEMS (HARPOON,
SLAM-ER)

• NAVY UNMANNED
AERIAL VEHICLES

• AERIAL TARGETS

AND DECOYS

• MISSION PLANNING

PEO(T)
TACTICAL
AIRCRAFT

PROGRAMS

PEO(W)
STRIKE WEAPONS &
UNMANNED AVIATION

PEO(A)
AIR ASW,

ASSAULT, & SPECIAL
MISSION PROGRAMS

PEO(JSF)
JOINT
STRIKE

FIGHTER AIR-1.0

COMMANDER,

NAVAL AIR SYSTEMS COMMAND

AIR-1.0

COMMANDER,

NAVAL AIR SYSTEMS COMMAND

• MARITIME
SURVEILLANCE
ACFT (S-3 / P-3 /
MMA)

• AIR ASW SYS

• MULTI- MISSION
HELO (H-60)

• EP-3 / ES-3

• AIRBORNE
STRATEGIC
COMM (E-6)

• NAVALTRAINING
ACFT (T-45TS,
JPATS, T-44, T-2,
TH-57, T-39,
TC-12)

• ACS

• V-22 OSPREY

• H-53

• EXEC HELO

• AH-1 COBRA

• UH-1 HUEY
• AV-8B HARRIER

MMP

SPECIAL
MISSION

ASSAULT

• AIRCRAFT
LAUNCH &
RECOVERY
EQUIPMENT

• NAVIGATION
SYSTEMS

• AVIATION
SUPPORT
EQUIPMENT

• H-46

• SUPPORT &
COMMERCIAL
DERIVATIVE
AIRCRAFT

• AIRCREW
SYSTEMS

• AVIATION
TRAINING
SYSTEMS

• TACTICAL
TRAINING
RANGES

• AIR COMBAT
ELECTRONICS

• AIR TRAFFIC
CONTROL /
LANDING
SYSTEMS

• E-2C / E-2 AHE / C-2A

• EA-6B
F-14 TOMCAT
F/A-18A/B/C/D
HORNET

• F/A-18E/F SUPER
HORNET

• EA-18G

• ADVANCED
TACTICAL AIR
PROTECTION SYS

• AIR-TO-AIR
MISSILES

CVSG/ESG MAT – PEO T/A/W

Multi Mission and Patrol MAT – PEO A
Special Missions MAT – PEO A/1.0

Future

Weapons MAT – PEO T/W

••AIR TRAFFIC CONTROLAIR TRAFFIC CONTROL

/ LANDING SYSTEMS/ LANDING SYSTEMS

AIRAIR--TOTO--AIRAIR

MISSILESMISSILES

4

MAT Vision
Customer Focus
• MAT vision and strategic plan are aligned with PEO,

PMA, and NAVAIR Enterprise goals
• MAT vision and goals support and reinforce program

decisions made within the PMA
• MAT strives to constantly improve value of
software acquisition, development, and
sustainment throughout a product’s lifecycle

• MAT is accountable to PEOs / PMAs, and NAVAIR
Enterprise for performance using objective, fleet
driven metrics

• MAT is an agile organization better able to align
resources with customer and fleet requirements in an
environment of change

• MAT strives for joint solutions for integration of new
capabilities across multiple platforms, yet at the same
time maintains product-line specific domain expertise
and touch points

5

MAT Goals
Process / Performance Improvement

• Continuous performance improvement is a key
element of MMP MAT operations

• CMMI is used as a framework for systems /software
process improvement

• MAT strives for commonality where
commonality makes sense

• MAT performance is both predictable and competitive

• MAT processes are measured; metrics are used to
manage the product

Work Culture and Environment

• Become an organization of collaboration and
stewardship

• Migrate from a risk averse culture to a mindset of
proactive risk identification and mitigation

6

MAT Configuration
• A MAT is a group of IPTs/SSAs that acquire,
develop, and maintain software products and
services for a group of PMAs.

• Each MAT’s size varies greatly and is designed to be
flexible in adapting to increases or decreases in
product/platform tasking based on a common set of
processes and tools. The primary responsibility of the
MMP MAT is to work closely with the PMAs to develop
an integrated product solution.

• Each MAT’s scope of activities is based on product
and PMA needs and may vary from non-recurring
mission systems software development and contracts
to acquisition engineering support expertise.

• Typical MAT responsibilities include development,
maintenance, and integration of services and work
products that are associated with the specified
product(s).

7

MAT Configuration (cont.)

• Each MAT relies on core engineering disciplines such
as systems/software engineering, software/system
integration and test engineering to accomplish its
mission.

• A MAT has a single Leadership, Administration,
Business Operations, and Process Team to
support functions such as business operations;
contracting, data reduction, program
management, laboratory facilities, Quality
Assurance (QA), Configuration Management
(CM) and process improvement

• A “Fair Share” cost model is employed for
shared resources within a MAT such as
facilities, process improvement and tools.

8

MAT Concept of Operation
• Each MAT utilizes a Leadership Team to plan,

coordinate and administer overall MAT
operations.

• The MAT Lead and Leadership Team work
collaboratively to ensure and promote
commonality of tools, processes, functions and
sharing of resources within the MAT.

• Initially, MATs will have very few common
processes or tools within the MAT

• Reuse and consistent application will
expand as each MAT matures and
becomes a tight and cohesive
organization.

9

Common MAT Support
• NAVAIR Software/System Support Center (NSSC) is a common

support team for use by all the MATs
• The NSSC integrates several existing Enterprise Teams (ETs)

into a single, collaborative entity that spans the NAVAIR
organization in supporting innovation and improvement at all
levels.

• The NSSC is the primary MAT resource in improving systems
and software engineering and acquisition knowledge, process,
product and organizational performance.

• MATs and projects/platforms acquire services and products
provided by the NSSC as needed on a fee for service basis.

• The primary areas of NSSC expertise are:
– Knowledge of acquisition, development, and maintenance of

software intensive systems.
– Systems and software performance improvement, data repository

(measurement and process artifacts), measurement analysis and
reporting.

– Communication, collaboration and organizational change
management

– Program Related Engineering (PRE) funding management and
coordination

– Communication with Fleet representatives (e.g., TYCOMs) for
issue identification, coordination and resolution via the chartered
NAVAIR Fleet Software Working Group

•

10

NSSC Resources
• System Engineering Resource Center (SERC)

– SERC has multiple areas of responsibility in systems engineering
that cover more than software acquisition and engineering.

– Several of these areas are of common interest to functions
performed by the NSSC.

– These common areas of interest will be the focus of SERC
involvement with the NSSC.

– Examples of common areas include:
• close coordination of systems and software engineering processes
• process and product measurement and analysis
• implementation of the Software Engineering Institute (SEI) Capability

Maturity Model Integration (CMMI) as our process improvement model
for software and systems engineering

• evaluation of tools for use on projects.

– Although an external organization to the NSSC the SERC is
available to support each MAT as needed.

• Software Resource Center (SRC)
– The Software Resource Center (SRC) helps NAVAIR teams improve

the acquisition, development and lifecycle maintenance of
software intensive systems..

– Key focus areas of the SRC to promote corporate performance
improvement are:

• Software Intensive Systems Acquisition
• Software Intensive Systems Development and Maintenance
• Fleet Support

11

NSSC Resources (cont.)
• Program Related Engineering (PRE) Technical Management

– The Program Related Engineering (PRE) Tactical Systems Software (TSS)
team provides technical oversight, management, and coordination within
NAVAIR of the Operations and Maintenance, Navy (O&M,N) budget that
funds life-cycle support for Naval aviation tactical weapons systems
software. This team has been in operation for over 10 years and has
detailed processes in place that will continue to operate under the NSSC
construct.

• NAVAIR Fleet Software Working Group (NFSWG)
– The NAVAIR Fleet Software Working Group (NFSWG) is in place to foster

communication and alignment between the Fleet and NAVAIR on key
software acquisition, development and sustainment issues. The NFSWG
focuses on tactical (1-2 year) software issues and liaisons with other groups
on non-tactical issues. In addition to issue identification, the NFSWG uses
available resources to:

• Resolve problems of a tactical (vice strategic) nature
• Reduce costs associated with software product development, deployment, and

maintenance, and
• Assist in determining tradeoffs between current and future readiness.

– The NFSWG coordinates their efforts with the Software resource Center and
the Software Leadership Team.

• People, Process & Product Resource (P3R)
– The People, Process, and Product Resource (P3R) will continue its mission

to enable adaptation, acceleration, and alignment of individual, team and
organization improvement efforts. P3R defines their products and services
to meet needs NAVAIR groups continually improving their performance.
P3R team members are dedicated full time as internal change agents,
facilitators, change and process consultants, and coaches working
cooperatively with all NAVAIR improvement initiatives to improve
performance.

12

• What is Reuse?

• What is Software Reuse?

• Why Software Reuse?

• Why Not?

• How do We Reuse Software?

• How do We Get Started?

What Questions Should What Questions Should

We Address ?We Address ?

13

• To use again especially after
reclaiming or reprocessing

• Further or repeated use

• Note: This infers there is value
remaining, thus not a through away
item

What is Reuse ?What is Reuse ?

14

• Software reuse is the process utilizing
existing software as the basis or starting
point for your next “Software Product”.

• “Software Product” includes all things
produced from a software development
effort, e.g: requirements, proposals,
specifications, software design, manuals,
test suites, source code, software objects,
applications, and related documentation

What is Software Reuse ?What is Software Reuse ?

15

• Provides a head start (Don’t reinvent the
wheel), thus saving development time for
other efforts, or getting product faster

• Increases product quality and maturity for
testing, usually yield fewer defects which
results in higher quality

• Risk reduction by “working on more familiar
ground”, and help provide repeatability

• Possibility of cost reduction as a result of the
factors previously mentioned

Why Software Reuse ?Why Software Reuse ?

16

–Initial investment “Cost of getting the
ball rolling”. “Not my dime!”

–Data Rights issues
–Still a level of “known territory”

–High cost to stand up/implement
reuse repository

–Thought “as more expensive” than
new software

–Invasion of “rice bowl”
–Legacy equipment syndrome, how do
we keep up with technology?

–Original design limitations

Why Not ?Why Not ?

17

• Examples:

–Most common for AIR Domain

•Next Operational Baselines (Platform series
– all PMAs)

•Common integration (across platforms, e.g.
weapons, sensors, etc. - PMA-201, PMA-209)

•Common uses (Operational use related to
training – PMA-205)

•Joint Arena Requirements – Mission
Planning – PMA-281)

How Do We Reuse Software ?How Do We Reuse Software ?

18

• Visionary planning (Think and look ahead, invest,
and implement the sustainment strategy form the
start)

• Wise investment (Spend the $ today that saves the
$10 later – Note: $10 you probably will not have
later)

• Establish standards and mandate compliance
• Bite size chunks (“Don’t eat the whole elephant”

at one seating – perform manageable tasking
gradually increasing the challenges)

• Step on toes, force the issue, and break some rice
bowls”

• Publicize successes (Low hanging fruit – make it
attractive)

• Offer help, training, and advice

How Do We Get Started ?How Do We Get Started ?

19

Software Reuse

Rex Coombs
NAVAIR PMA-209

20

• Software reuse is the process of
implementing or updating software systems
using existing “Software Products”.

• “Software Products” include all things
produced from a software development effort.

–Examples: requirements, proposals,
specifications, design info, user manuals,
test suites, source code, software objects,
COTS or third-party applications within a
larger system, and related documentation

NAVAIR Software Reuse NAVAIR Software Reuse -- DEFINITIONDEFINITION

21

• Reuse Benefits – Don’t reinvent the wheel

– Reduced cost
• Shorter development time and fewer defects, mean lower cost.

– Shorter development schedule
• Finished product available earlier

– Lower risk of program failure
• Schedule, cost and quality

– High quality products and accelerated product
maturity
• Repeated “Software Product” reuse results in the development of

reliable, high quality products with fewer defects

Software Reuse Software Reuse -- BENEFITSBENEFITS

22

“Pockets” of success

– Multiple products, developed by the same supplier, hosted on the same
or “similar” hardware system

• F/A-18 AYK-14 Operational Flight Program and AV8B AYK-14 Operational Flight

Program use common subroutines

– Common products used across multiple platform users

• In flight diagnostic software used in AYK-14 Operational Flight Programs (F-14D,

F/A-18)

– Algorithms as opposed to software

• Ground Proximity Warning System

– Multiple host systems

– Multiple platforms

– Use of proven algorithm

– Software products written in High Order Language

• Across multiple programs under one PMA umbrella, software CSCIs reusable

Software Reuse Software Reuse –– PAST WINSPAST WINS

23

“Pockets” of success (cont.)

– SSAs that develop a library for reuse (Contractor and Government)
• Ground Proximity Warning System – V2.4 upgrade.

– Goal – 90% reuse for upgrade of software capability across multiple
platform users

»Achieved greater than 90% reuse for requirements, algorithms and
documentation

»Achieved 76% reuse for source code

»Achieved 83% reuse for test case and test software development effort

– Processor technology evolution with software backward
compatibility as a requirement

• AN/AYK-14(V) – 30 years and 3 generations of processors with hundreds of
hardware design changes – OFP subroutines are backward compatible

– Mandated Programming Languages
• Ada

– Libraries and tools

– Documentation

– Reuse seems to have worked better for small, experienced teams
• Better communication brings opportunity

– A variety of software libraries and repositories exist todayA variety of software libraries and repositories exist todayA variety of software libraries and repositories exist todayA variety of software libraries and repositories exist today

Software Reuse Software Reuse –– PAST WINS (cont.)PAST WINS (cont.)

24

• Reuse Barriers

– Data Rights issues can prevent reuse of “Software Products”
between programs.

– High cost to stand up/implement reuse repository
• ROI will be worth it, if implemented and used properly

– Perception that there is high cost to modify software CSCI reuse
candidates
• Poor reuse candidate choices can give reuse a bad name. Carefully select

reuse candidates.

– Reuse deemed by some to be more expensive than new software
- Myth or Reality?
• Takes 1.5 times the effort to develop reusable software

• Takes 20% as much effort to reuse than to develop new

– Legacy equipment used “machine” unique “Assembler
Language” or “Machine Code”.
• Limited opportunity for reuse for “other” equipment

Software Reuse Software Reuse -- BARRIERSBARRIERS

MAT CREATED TO HELP BREAKDOWN BARRIERSMAT CREATED TO HELP BREAKDOWN BARRIERS

25

• Reuse Barriers (cont.)

– Software designs that are not conducive to reuse
• Short term cost savings encourages teams to take the wrong approach

• Need modular designs

• Need software objects that perform a reusable function

• Need software designed and generated in a clearly defined, “open”
way, with concise interface specifications, understandable
documentation.

– Lack of practitioner training and technical skills to develop
software reuse candidates

– Lack of practitioner training and technical skills to perform
analysis and find the right reuse candidates

– No organized repository with right level of identification and
associated documentation

– Politics and “protecting our business” is a barrier to
proactive development of reusable software by industry.

Software Reuse Software Reuse –– BARRIERS (cont.)BARRIERS (cont.)

MAT CREATED TO HELP BREAKDOWN BARRIERSMAT CREATED TO HELP BREAKDOWN BARRIERS

26

• Reuse Barriers (cont.)

– No incentive to generate Software Products for reuse, or to reuse.

– No management and process support for reuse concept.

– Lack of formal software engineering staff training needed to
successfully implement and execute software reuse.

– Lack of project management and software management training for
both technical and non-technical aspects of software reuse.

– No organizational or team group that is responsible for the
maintenance of the reuse infrastructure.

– No project level responsibility for the acquisition and maintenance of
reusable components for the project.

– No clearly defined process with process team to assist organizations
to identify reuse candidates and find items to reuse

• Adequate resources and funding must be provided to perform software
reuse tasks

Software Reuse Software Reuse –– BARRIERS (cont.)BARRIERS (cont.)

MAT CREATED TO HELP BREAKDOWN BARRIERSMAT CREATED TO HELP BREAKDOWN BARRIERS

27

• Reuse Barrier related questions:

– Reuse has worked in “pockets”, and generally for “small”
teams. How do we broaden reuse opportunity across teams
and organizations?

– How do we fund the standup of an organizational enterprise
that organizes and manages software available for reuse?

– How do we institutionalize rules for developing code so that it
is reusable?

– How do we motivate individual teams to develop reuse friendly
software at a higher short term software development cost?
• Note that the benefit realized might not even be for the developer’s own

team

– How would a developer find the piece of software he’d like to
reuse when we broaden opportunity across teams or
organizations

• Overcoming barriers is critical to implementation of a successful
software reuse program.

Software Reuse Software Reuse –– BARRIERS (cont.)BARRIERS (cont.)

MAT CREATED TO HELP BREAKDOWN BARRIERSMAT CREATED TO HELP BREAKDOWN BARRIERS

28

• Software Reuse Recommendations

– Ensure contractual Data Rights allow software reuse
– Design software in functional units that are

conducive to reuse
• Need modular designs
• Need software objects that perform a reusable function
• Need software designed and generated in a clearly defined, open

way, with concise interface specifications, understandable
documentation.

– Promote the use of widely used programming
languages to maximize opportunity

– Focus where biggest ROI can be achieved
– Set tactical and strategic goals and use spiral design

approach.
• Start small but with immediate benefit to the organization.

• Get quick wins while working toward long term big wins.

Software Reuse Software Reuse -- RECOMMENDATIONSRECOMMENDATIONS

29

• Software Reuse Recommendations

– Include design algorithms, applicability information, detailed
design information and documentation along with source
code in common repository.

– Don’t reinvent the wheel. Team with other orgs with
repositories.
• Provide links to other repositories

– Repository should contain products/information that
addresses all levels of reuse
• Links to info regarding COTS products that might be used in lieu of

software development

– Promote the use of common operating systems and host
systems to allow best opportunity

– Restrict software developers to “standard” language
instructions.
• Avoid language extensions unique to particular compilers

Software Reuse Software Reuse –– RECOMMENDATIONS (cont.)RECOMMENDATIONS (cont.)

30

• Software Reuse Recommendations

– Train practitioners to develop reusable software
• The training needs to be standardized and institutionalized.

– Develop clear criteria for what should be designed for reuse
and what shouldn’t be
• Plan and training needed

– Stand up consultant team that works with projects to ID
reuse candidates and to help decide whether submittal into
the repository is appropriate

– Quantify benefits
• Show that reuse results in reduced cost and reduced schedule risk to

programs

– Devise incentives for those who reuse available software
• Source selection process should give special attention to proposals

that include reuse

• Incentives for practitioners both organic teams and contractor
organizations

Software Reuse Software Reuse –– RECOMMENDATIONS (cont.)RECOMMENDATIONS (cont.)

31

• Software Reuse Recommendations

– Promote use of NDI/COTS products to reduce cost

• Provide info and links to owners of these products

– Advertise the wins and promote the benefits

– Identify existing repositories and make links
readily available to developers and managers
• Industry, AF, Army, Navy repositories

• Rex’s - Informal survey of practitioners and SSA managers (2/06)

–5 SSAs surveyed

»1 sited repositories they’ve attempted to use outside of
their organization (Army Reuse Center, etc.)

»No common understanding of available repositories

Software Reuse Software Reuse –– RECOMMENDATIONS (cont.)RECOMMENDATIONS (cont.)

32

• Software Reuse Recommendations

– Include the NAVAIR Mission Area Team (MAT) in
this effort

• New NAVAIR enterprise team with focus toward

efficient effective use of limited NAVAIR software

dollars

• Opportunity to organize and promote reuse across

the NAVAIR software enterprise

– NAVAIR System Software Center (NSSC)

• Consultation support available to Navy teams

Software Reuse Software Reuse –– RECOMMENDATIONS (cont.)RECOMMENDATIONS (cont.)

33

• Software Reuse Recommendations

– There is significant ROI potential for software reuse

– A software repository is not a silver bullet to
successful software reuse. There must be
communication, management buy-in, training and
ongoing product team consultation to implement an
effective reuse program.

– “Software Products”, including proposals,
specifications, design documentation, user manuals,
test suites, source code, software objects, links to
COTS or third-party applications within a larger
system, other documentation, etc. are all candidates
for reuse.

– Start small with quick wins. Evolve to big wins.

Software Reuse Software Reuse –– RECOMMENDATIONS (cont.)RECOMMENDATIONS (cont.)

34

Service-Oriented Architecture

Mike Stine

PMA-281

35

What are we trying to achieve?

• Today in the Navy we are surrounded by buzz
words that seem to herald a new era in fleet
network operations. Firm data seems to be
lacking. So, what are we actually trying to
achieve. Buzz words include:
– Web Enabled

– Web Services

– Service Oriented Architecture (SOA)

– NCES

– FORCEnet

36

Some Definitions:
– Web Enabled: An application that runs on a server and can

be executed via a web browser, thus reducing the number
of copies needed to be licensed and distributed.

– Web Services: Machine to machine (or application to
application) communication via SOAP messages, not
associated with browsers.

– Service Oriented Architecture (SOA): An architecture
where information is exchanged between apps. at the
application level (as compared to the component level) and
the information that an application can make available to
other users is “Published”- made public

– Network Centric Enterprise Services (NCES): The DoD
implemented standards and services to enable a DoD wide
Service Oriented Architecture, (the ES in GIG-ES). Primarily
a tailored web services arch.

– FORCEnet: The Navy’s implementation of the Network
Centric Operations and Warfare (NCOW)

37

We are trying to achieve a
Service-Oriented Architecture

• What are the faces of a Service-Oriented
Architecture:

• Software language implementations:
– J2EE (http://java.sun.com/j2ee/)

– .NET (http://www.microsoft.com/net/)

• Industry implementations:
– BEA WebLogic Server (http://www.bea.com/)

– IBM WebSphere

– Sun’ Java Web Services Development Program
(JWSDP)

– …. A myriad of others, some surprisingly good!

38

Standards

• Service-Oriented Architecture is unique in
that it is achieved through the application of
non-proprietary standards. (More importantly
it appears both Sun and Microsoft have
agreed to implement the same standards).
Additionally, it abstracts (hides) functionality
at the application level vice the component or
subroutine level.

• These standards will allow one system to
communicate with another regardless of
hardware platform and operating system

39

Key Standards

• What standards
– SOAP: Simple Object Access Protocol

• Original name, SOAP now considered a specification name, not
an acronym

– WSDL: Web Services Description Language

– UDDI: Universal Discovery Description Integration

– XML: Extensible Markup Language

– HTTP: Hypertext Transport Protocol

• SOAP, WSDL, XML and HTTP are managed by:
– W3C: http://www.w3.org/

• UDDI is managed by:
– OASIS: www.oasis-open.org/

– More info: http://www.uddi.org/specification.html

40

What does this Alphabet Soup
of Standards Really Mean?

• Objective – Request or transmit information over an interface
– SOAP is the name of the message used for this communication.

• It is an XML enabled message both for requests and responses. These
functional calls and their data structures can be defined in a WSDL

• XML based – read by an XML Parser
• Sent/Received via http, usually via port 80

– WSDL are essentially interface definitions
• Akin to API documentation
• Requests for data are placed in the format specified by the WSDL

– Requests sent via a SOAP message

• Data is provided in the format specified in the WSDL
– Data provided via a SOAP message

• Some great stuff:
http://webservices.xml.com/pub/a/ws/2002/04/30/wsdl.html

– UDDI
• Akin to White/Yellow Pages
• Specifies were to find a given service and any potential WSDL
• Some great stuff: http://uddi.microsoft.com/default.aspx

41

A Simple Hypothetical Example
The JMPS PTW Interface

• Lets say:
– The NTW program develops a WSDL specification (lets call it
OpenNTW.wsdl) through which other systems can request
and obtain imagery. The means of obtaining
OpenNTW.wsdl are placed in the DOD UDDI Registry

– A second program, LEAP, finds out about NTW via the DOD
UDDI Registry, requests a copy of OpenNTW.wsdl from
NTW and develops an interface that allows users to input
data specifying the imagery needed and creates a SOAP
message template for requesting the information from NTW

– In operation, the user specifies what imagery is needed.
User input is placed into the SOAP template and the
complete SOAP message sent to NTW. NTW receives the
request and responds via a SOAP message, also formatted in
accordance with the OpenNTW.wsdl, with the required
imagery.

42

Other Examples to Consider

• Amazon.Com

– Information is moved electronically between
Amazon, its suppliers, warehouses and shippers as
well as various credit card companies

• Web Based Travel Services

– Information is moved between these services and
hotels, airlines and rental car companies

These examples seem perfect for the
application of the SOAP/WSDL/UDDI trinity

43

TRAINING SYSTEMS INITIATIVES TRAINING SYSTEMS INITIATIVES TRAINING SYSTEMS INITIATIVES TRAINING SYSTEMS INITIATIVES
& SOFTWARE REUSE EXAMPLES& SOFTWARE REUSE EXAMPLES& SOFTWARE REUSE EXAMPLES& SOFTWARE REUSE EXAMPLES

Ken Reams

PMA-205

44

Training Systems Organization

• Training Device Software Baseline resides
at Field Offices, in many cases hosted on
standalone Software Support Systems
(SSS)

• Software tool sets and languages vary with
each Training System implementation

45

Software Reuse Initiatives

• TSD participation on the NAVAIR/Fleet
Software Working Group
– Reviewing Specifications for the NAVAIR Data

Distribution System (NDDS) software repository
– Collaborating to identify Training S/W hooks on

Operational Flight Programs (OFP) for reuse
purpose

46

Software Reuse Initiatives (cont.)

• TSD participation on the Special Mission
MAT (Mission Area Team)
– Adopt relevant processes and tools promulgated

by the SM MAT
– Support metrics collection
– Implementing Key Process Areas from the CMMI

framework

47

Examples of S/W Reuse

• Naval Aviation Systems Master Plan
(NASMP)
– Run-Time Interface (DMSO RTI version 1.3
or VTC RTI NGPRO 3.0)

– Federation Object Model (FOM) Dataset

– NASMP Portable Source Initiative (PSI)
Visual Database

48

Examples of S/W Reuse (cont.)

• Digital Voice Core Engine
– Use to develop voice communications for various training

products

– Provides a DIS interoperability interface

– Encodes and decodes digital voice

• Distributed Interactive Simulation – High
Level Architecture Gateway
– Provides both DIS and HLA interoperability

– Code reused for over a decade on multiple training systems

– Distributed to other government agencies and contractors
under a government licensing agreement

49

Examples of S/W Reuse (cont.)
• Aviation Training Systems Programs

– VH60 trainers reused Host code from the MH60 trainer and
Instructor Operation Station (IOS) code from the CH46
trainer

– VH3 trainers reused Host code from the SH3 trainers and
the IOS code from the CH46 trainer

– CH46 Aircrew Procedure Trainer (APT) reused Host and IOS
code from the CH46 Weapon Systems Trainers (WST)

– CH53 APT reused Host and IOS code from the CH53 WST
– F18 APT reused Host code from the F18 WST
– E6B trainers reused code from P3 MAST
– USCG HH60 and HH65 trainers reused IOS code from the

CH46 WST
– P3 Tactical Operational Readiness Trainer (TORT) reused the

Acoustics Stimulator from the MH-60R Tactical Operational
Flight Trainer (TOFT)

50

Examples of S/W Reuse (cont.)
• Integrated Learning Environment Cybrarian

(under development)
– Repository for learning assets

– Functions:
• Provides consolidation of all approved and accepted ILE media

and content packages

• configuration management of the ILE metadata schema

• compliance testing and acceptance of ILE content packages

• definition of media data package requirements necessary to
ingest source files, rendered content, and manifests for ILE
content packages authored externally to the LCMS

• managing CORDRA registration of all accepted and approved
content

• building the new ILE architecture for the Integrated Metadata
Repository (IMR) and its Authoritative Data Source
and Operational Data Store environments

51

Questions?

